推荐期刊

低渗透油田注水井出油微观机理研究

时间:2015-12-20 23:27:37 所属分类:天然气工业 浏览量:

摘 要:研究了低渗透油田水井出油机理,并提出水井转抽的适合条件,为挖掘低渗透油田剩余油潜力提供理论依据和参考。A油田属于低渗透注水开发油田,生产过程中,对部分注水井实施转抽,取得明显的开发效果,在一定程度上提高了低渗透油田的水驱油效率。 关键

摘 要:研究了低渗透油田水井出油机理,并提出水井转抽的适合条件,为挖掘低渗透油田剩余油潜力提供理论依据和参考。A油田属于低渗透注水开发油田,生产过程中,对部分注水井实施转抽,取得明显的开发效果,在一定程度上提高了低渗透油田的水驱油效率。

关键词:注水井转抽,机理
一、注水井转抽微观作用机理
(1)毛管力作用下注水井周围油层中存在大量剩余油。低渗透油田油层毛管力较大是导致注水井周围存在剩余油的一个主要因素。A油田是低渗透油田,油层渗透率低,一般在7—30×10-3μm2左右,孔隙吼道半径小,一般在1μm左右。水驱时毛管数很低,达到10-5数量级,在这样低的毛管数下,毛管力对水驱过程具有明显的控制作用。目前普遍采用贝克莱前缘方程计算油层中不同开发时刻的含水饱和度分布,在水驱前缘处,含水饱和度呈台阶状分布,与油田生产实际不符,这主要因为方程在推导过程中忽略了毛管力的作用。对于注水开发的中高渗透油田,由于油层渗透率孔隙半径较大,毛管力很小。对于低渗透油田,毛管力较大,继续采用这个公式将导致较大的误差,这种现象已被F.A.L.Dullien的水驱油实验所证实。毛管数CA的定义为:,(1)
式中:Req—由于孔隙结构长度特征确定的常数;L—岩心长度,m;μ—水的粘度,mPa·s;σ—油水界面张力,N/m;Vp—渗流速度,m/s;θA—润湿角。
  由公式可知,σ和cosθA越大,毛管力越大,毛管数CA越小。当毛管力较小,毛管数CA较大时,含水饱和度分布曲线在水驱前缘处呈台阶状分布,相当于活塞式水驱油,即水驱过后油层中剩余油较少;当毛管力逐渐增大,CA逐渐减小时,含水饱和度前缘台阶变缓,表明水驱过程中毛管力的作用增强,水驱过后,含水饱和度值较低,剩余油饱和度较大,特别是当毛管力增大到一定程度,CA=0.01时,含水饱和度分布基本上是一条直线,整个油水两相渗流区间,各点含水饱和度值很低且基本相等,富集有大量的剩余油。实验表明,低渗透油田注水井周围在经过一段时间的注水开发后,油层中仍残余有大量的剩余油,当驱动压差较大,地层液体流速较大时,粘滞力居主导地位,并联孔道中各孔道内液体的流速与其半径的平方成正比,因此,大孔道中的油水界面将优先到达出口端,而将小孔道中的油圈闭起来,开发效果较好;如果驱替压差小,液体在小孔道中的流速大于液体在大孔道中的流动速度,小孔道中的油水界面优先到达出口端,而将大孔道中的油圈闭起来,开发效果变差。低渗透油田,单井配注量低,地层中液体的流动速度低,毛管力作用将居主导地位,容易在大孔道内形成剩余油。
(2)水井转抽后有利于克服毛管力的圈闭作用。分析表明,当水井注水时,毛管力是驱动力,注入水优先在小孔道中流动,圈闭大孔道中的石油;而当水井转轴后,油层中是油驱水过程,毛管力变成阻力。小孔道中,毛管力大阻力也大,而大孔道中,毛管力小,阻力也小,液体优先沿大孔道流动,原来注水时被毛管力捕集在大孔道中的石油反而容易流动,由于这部分油相占据的截面积较大,通过油层岩石截面的量大,表现在相对渗透率曲线上为水井转抽后油相相对渗透率曲线抬高,开发效果变好,这一点已被相对渗透率测定实验所证实,见图1。图中吸渗曲线相当于水井注水过程中测定的油相渗透率,排驱曲线相当于一开始就是油驱水过程,在实验室可以测定这种曲线,水井注水一段时间又转抽后,油层中油相渗透率对应的就是这条过渡型曲线。

(3)水井转抽后有利于克服贾敏效应。已有研究成果表明[1,2,3]:低渗透油藏储集层致密渗透率极低,孔隙喉道极为狭窄,流动阻力很大,地下流体运动为非达西低速渗流,它是影响低渗透油田开发效果的重要因素,因此在这些细微孔隙中,分子力的作用显得较为突出,亲水油层的矿物颗粒表面会吸附一层水膜,在分子力的作用下,这层水膜是不可流动的,尽管其厚度较小,但进一步减小了低渗透储集层中有效孔隙和喉道的大小,使得这些孔隙或者成为束缚水孔隙或者含油饱和度很低,同时喉道尺寸的减小,必然使水驱油过程中“卡断”现象增多,大大增加了拉断油滴被捕集成为剩余油的概率,这样,大量油珠产生的贾敏效应会给低渗透油藏水驱油过程造成很大阻力,甚至“锁死”已形成的水驱油通道,使油层有效渗透率降低,这也是导致低渗透油田注水压力不断上升的一个重要因素,最终使水驱油效率降低。水井转抽后,油层的贾敏效应降低,水井转抽后增大了驱动压差有利于克服贾敏效应。A油田水井的平均压力梯度仅有0.08MPa/m,不能克服贾敏效应而使分散的油滴流动,水井转抽后,流压降低到2MPa左右,压力梯度增幅很大,能够克服油层中的贾敏效应使分散的油滴活化,开始流动。对于小孔道中的油滴,毛管力梯度特别大时,目前的驱动压差还不能克服它的贾敏效应,仍存在一定数量的剩余油。水井转抽后,有利于解除油层中固体颗粒的堵塞,在注水过程中由于注入水中含有各种杂质,或者由于注入水长期冲刷使岩石颗粒发生运移,而堵塞孔隙通道。对于中高渗透油层,这种固体颗粒的堵塞作用不是十分明显,而对于A油田这种低渗透油层,固体颗粒堵塞对油田开发的损害影响都是十分显著的,水井转抽后,由于反向驱替作用,原来注水过程中堵塞在孔喉处的颗粒发生运移,解除堵塞。在实验过程中观察到了污水中所含固体颗粒对岩心孔道造成的堵塞现象,这种堵塞对低渗透油层伤害是十分严重的,与净水驱油实验相比固体颗粒对油层造成伤害以后,水驱油效率降低10%以上,采用反向驱替的效果最好,表明反向驱替具有一定的解堵作用,从而也证明了水井转抽后,对固体堵塞具有一定的解堵作用。
二、选井条件确定
(1)为了定量研究注水量大小对大孔道中形成圈闭剩余油的影响,定义临界流速vc,它的物理含义是:大小孔道内液体的流速相等时,通过并联孔道的平均流速。当v<vc,毛管力起主导作用,大孔道中圈闭形成剩余油;当v>vc时,驱动压差起主导作用,小孔道中圈闭剩余油。
(2)在计算临界速度时,需要估算两个并联大小孔道的半径r1和r2,这两个数值随油层渗透率和非均质性的不同而不同,不可能直接测量得来,因此,采用毛管力曲线近似处理的方法。处毛管力曲线对应的孔隙半径是整个油层的平均孔隙半径,处毛管力曲线对应的孔隙半径是大孔道的平均半径r2,而处毛管力曲线对应的孔

[1][2]下一页

转载请注明来自:http://www.zazhifabiao.com/lunwen/gcjs/trqgy/30988.html